
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Horizontal Motion

\qquad

- What would happen if we shot a cannon \qquad ball at velocity, v, horizontally in a world without gravity?
- It would travel horizontally with constant velocity, v

Vertical Motion

\qquad

- What would happen if we dropped a \qquad cannon ball from a cliff?
- It would fall and accelerate with an
\qquad acceleration, g

Horizontal and Vertical Motion

- What happens when an object is launched horizontally with gravity?
- The object follows a parabolic path starting from its launching point and eventually ending on the ground

So what does this mean?

- Since gravity only occurs in the vertical \qquad direction, it can only affect the vertical motion \qquad

- This means that we will treat the horizontal and vertical components of velocity separately

	Horizontal	Vertical
Acceleration	No	Yes g, down $\left(-9.81 \mathrm{~ms}^{-2}\right)$
Velocity	Constant	Changing

Example

\qquad

- A cannon ball is launched with a horizontal velocity of $50 \mathrm{~ms}^{-1}$ from the top of a 10 m high cliff. Determine the distance from the bottom of the cliff where the cannon ball lands.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

We will treat this situation as two separate problems: a horizontal one and a vertical one.

- Horizontal
- Vertical
- $\mathrm{u}_{\mathrm{x}}=50 \mathrm{~ms}^{-1}$
- $u_{y}=0$
- $a=0$
- $a=g=-9.81 \mathrm{~ms}^{-2}$
- $\mathrm{s}_{\mathrm{x}}=$?
- $\mathrm{s}_{\mathrm{y}}=-10 \mathrm{~m}$
\qquad
- $\mathrm{t}=$?

We have enough information to solve for time, t , vertically.

$$
\begin{aligned}
& \text { - Vertical } \\
& \qquad \begin{aligned}
s & =u t+\frac{1}{2} a t^{2} \\
t & =\sqrt{\frac{2 s_{y}}{g}} \\
t & =\sqrt{\frac{2(-10 \mathrm{~m})}{-9.81 \mathrm{~ms}^{-2}}}=1.43 \mathrm{~s}
\end{aligned}
\end{aligned}
$$

- The time it takes for the object to fall and hit the ground is the same as the horizontal time
- The object stops moving horizontally once the object has hit the ground
- That means that we can now solve for the horizontal distance

- Horizontal

$$
\begin{aligned}
& v=\frac{s}{t} \\
& s_{x}=u_{x} t \\
& s_{x}=\left(50 \mathrm{~ms}^{-1}\right)(1.43 \mathrm{~s})=71.5 \mathrm{~m}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- But what if the object is launched at an \qquad angle?
- No problem, we treat it exactly the same way

Example

- A cannon ball is launched with a velocity of $50 \mathrm{~ms}^{-1}$ at an angle of 30° from the horizontal from the top of a 10 m high cliff. Determine the distance from the bottom of the cliff where the cannon ball lands.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Once again, we need to separate the horizontal and vertical components
- This time, however, the initial velocity is a vector at an angle
- That means that we have a velocity in both the horizontal and vertical directions

So, let's write down what we know

- Horizontal
- Vertical
- $u_{x}=50 \cos 30 \mathrm{~ms}^{-1}$
- $\mathrm{u}_{\mathrm{y}}=50 \sin 30 \mathrm{~ms}^{-1}$
- $\mathrm{a}=0$
- $a=-g=-9.81 \mathrm{~ms}^{-2}$
- $\mathrm{s}_{\mathrm{x}}=$?
- $\mathrm{S}_{\mathrm{y}}=-10 \mathrm{~m}$
- $\mathrm{t}=$?
- $\mathrm{t}=$? \qquad
\qquad
Once again, we have enough information to solve for time, t, vertically. \qquad
\qquad
- vertical

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
& -10 \mathrm{~m}=\left(50 \sin 30 \mathrm{~ms}^{-1}\right) t+\frac{1}{2}\left(-9.81 \mathrm{~ms}^{-2}\right) t^{2} \\
& 4.905 t^{2}-25 t-10=0
\end{aligned}
$$

- We have to solve this using the quadratic formula

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
& t=\frac{-(-25) \pm \sqrt{(-25)^{2}-4(4.905)(-10)}}{2(4.905)} \\
& t=\left\{\begin{array}{l}
-0.37 \mathrm{~s} \\
5.47 \mathrm{~s}
\end{array}\right.
\end{aligned}
$$

- Since time cannot be negative, the only value that makes sense is 5.47 s
- Once again, the horizontal part takes the same amount of time
- So now we can solve the horizontal part

- Horizontal

$$
\begin{aligned}
& v=\frac{s}{t} \\
& s_{x}=u_{x} t \\
& s_{x}=\left(50 \cos 30 \mathrm{~ms}^{-1}\right)(5.47 \mathrm{~s}) \\
& s_{x}=\left(43.3 \mathrm{~ms}^{-1}\right)(5.47 \mathrm{~s})=237 \mathrm{~m}
\end{aligned}
$$

- We will use this technique to solve all projectile motion problems

